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Abstract—The electromagnetic spectrum available for mil-
itary use is increasingly crowded and scarce. The military
must efficiently allocate spectrum by reusing channels to the
maximum extent possible, while also limiting the number of
channel changes over time for systems that require manual
channel configuration. The classic channel assignment problem
is often used to provide exact allocation solutions, but solving
this combinatorial optimization problem over multiple time steps
while considering cumulative co-channel interference constraints
is computationally challenging. Using realistic data sets from large
U.S. Marine Corps combat scenarios, we illustrate the importance
and difficulties of solving this problem. We examine current
solution methods and describe their inadequacies when solving
larger problem instances. We also provide a list of ideas for future
research on how to address this important and timely challenge.

I. INTRODUCTION

The United States military fields many different types of
radios and other wireless systems that require vast swathes of
electromagnetic (EM) spectrum, including wideband mobile
ad-hoc network (MANET) radios, radars, jammers, satellite
communications radios, and data links for unmanned aerial
vehicles. These wireless systems offer tremendous capabilities,
including high data transmission rates (in the case of commu-
nications devices) and high-fidelity portrayals of the operating
environment (in the case of radars and other sensors). However,
in general, the larger the amount of transmitted information,
the more EM spectrum (i.e., bandwidth) is required.

Meanwhile, the U.S. military will continue to operate in
environments with increasing restrictions on spectrum use,
both in the U.S. and abroad. Wireless communications traffic
from civilian, joint, and coalition networks will increasingly
clutter the EM spectrum, and the Federal Communications
Commission (FCC) is reassigning the military to new bands
to share spectrum with the private sector [1], [2]. Efficient
allocation of available channels (i.e., contiguous portions of
EM spectrum) is required to ensure military forces are able to
fully utilize new wideband transmission devices [3], yet current
methods of allocation are woefully inadequate. Indeed, in a
major study the U.S. Marine Corps found that with current
allocation methods, Marine task forces will not have enough
spectrum available to support the use of wideband MANET
radios in major combat operations [4].

We consider the problem of a U.S. Marine Corps (USMC)
spectrum manager who must determine an efficient spectrum
allocation scheme to support multiple, mobile, independent
MANETs operating on rough terrain over several days or

weeks. Many Marine Corps EM systems, including single-
channel radios, radars, jammers, and the independent MANETs
we consider, do not automatically coordinate channel assign-
ments because of security concerns, additional complexity,
and communications overhead (i.e., bandwidth and processing
required for coordination). They receive centralized channel
assignments from a spectrum manager, and then a human
operator manually configures the radios, thus creating a time
lag. The spectrum manager knows the capabilities of each radio
and their starting locations, and has a rough understanding
of their future locations. Using this information and terrain
elevation data, and being mindful of co-channel interference
(unintentional electromagnetic transmissions between two or
more radios assigned the same channel), the spectrum manager
may choose to minimize the number of channels required to
support communications, or minimize total interference given
a fixed number of channels. We assume the spectrum manager
has a few hours, and possibly as much as several days, to
determine the best allocation using local computing resources.

Currently, spectrum managers use several software tools to
inform spectrum allocation decisions, including the Systems
Planning, Engineering, and Evaluation Device (SPEED) [5]
and Spectrum XXI [6]. These tools provide radio coverage
analysis reports, and the latter tool provides a database to
deconflict assignments across a given operating area. Neither
consider the interference among a large number of mobile
transmitters over multiple time periods, nor do they provide
a method for minimizing the number of required channels.

In a landmark paper, Hale [7] differentiates the frequency
assignment problem (FAP) (where assigned frequencies may be
non-contiguous) from the channel assignment problem (CAP)
(where assigned frequencies are in a contiguous block) that we
consider. Murphey et al. [8] observe that though there is ex-
tensive research into the CAP, it remains a notoriously difficult
problem to solve. Metzger [9] first observes the possibility of
using optimization techniques for solving CAPs. He relates
the problem to the graph-coloring problem, which restricts
any two adjacent nodes (i.e., radios) from being assigned
the same color (i.e., channel). These pairwise constraints are
used in the vast majority of research on the interference-
aware CAP [10]–[13]. This basic form of the CAP was shown
to be NP-complete [14], yet the more realistic interference
constraints that must be considered for military MANETs are
far more computationally challenging. In our application, there
are many radios operating within a close distance of each
other, so we must consider the cumulative effects of multiple
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sources of co-channel interference, rather than just interference
between pairs of radios. In this way, our constraints can be
represented using a hypergraph, where a hyperedge connects
two or more nodes, and our optimization problem is thus a
form of hypergraph coloring [15], [16].

In this paper, we build on previous research [4], [17] to
examine in detail the computational difficulties of solving the
cumulative co-channel interference-aware CAP for military
MANETs. In the next section, we provide two simplified CAP
formulations, and then describe our realistic datasets generated
from USMC combat scenarios. In Section III we describe
current solution methods and their shortfalls when faced with
the computational challenges of our realistic datasets and
constraints. In Section IV, we offer ideas for future research,
and in Section V provide our conclusions.

II. PROBLEM FORMULATION AND DATASETS

A. Channel Assignment Problem

In order to describe the computational challenges of cu-
mulative co-channel interference, we build on [4], [11], [17]
to present both minimum-order (MO) (i.e., minimizing the
number of channels) and minimum-interference (MI) CAPs
for groups of multiple, independent MANETs. CAPs with
alternate objectives, such as maximizing service, will suffer
the same computational challenges we describe.

Let r ∈ R (alias s) represent each MANET radio. Each
radio is permanently assigned to a MANET unit u ∈ U ,
indicated by the set of logical arcs (r, u) ∈ L. A unit may
represent a tactical military organization, such as an infantry
company or battalion headquarters. Let the set of nodes N
(indexed by n) comprise both radios R and units U , i.e.,
n ∈ N = R ∪ U .

Let a channel c ∈ C be a contiguous range of EM
frequencies, where C is the set of available orthogonal (i.e.,
non-interfering) channels. Each unit u and the radios assigned
to it require a channel assignment. Let Xc

n ∈ {0, 1} indicate
whether node n (either a radio or a unit) is using channel c:

Xc
n =

{
1, if node n uses channel c
0, otherwise

∀n ∈ N, c ∈ C. (1)

All radios in a unit use the same channel, so:

Xc
r = Xc

u ∀c ∈ C, (r, u) ∈ L (2)

and each unit u is assigned only one channel, so:∑
c∈C

Xc
u = 1 ∀u ∈ U. (3)

Let Y c ∈ {0, 1} indicate whether channel c is being used:

Y c =

{
1, if channel c is used
0, otherwise

∀c ∈ C (4)

which is enforced via:

Xc
u ≤ Y c ∀u ∈ U, c ∈ C. (5)

Let (r, s) ∈ W indicate the set of all wireless arcs between
all radios r, s ∈ R. These arcs represent both intentional EM
transmissions between radios assigned to the same unit, and

r 

Fig. 1. Two MANETs supporting separate units (indicated in blue and green)
but assigned to the same channel. Solid arrows indicate wireless arcs between
radios in the same MANET; dashed arrows indicate co-channel interference.

unwanted interference from all other radios assigned to the
same channel c ∈ C. These arcs exist in both directions, and
each radio can receive transmissions from any other radio,
so |W | = |R| (|R| − 1). Each unit u ∈ U forms a separate
MANET among its assigned radios using the available wireless
arcs (r, s) ∈ W : (r, u) ∈ L, (s, u) ∈ L. Fig. 1 shows two
separate units (indicated in blue and green) and their assigned
radios. The solid arrows indicate bidirectional wireless arcs
(r, s) ∈ W between radios assigned to the same unit. All
radios are subject to co-channel interference from all other
radios assigned to different units but operating on the same
channel, indicated by dashed gray arrows directed to radio r
(other lines withheld for clarity). In our scenarios, there are
no connections between units; that is, disparate MANETs are
not connected via a backhaul network.

We use a basic signal-to-interference ratio (SIR) model
to calculate both co-channel interference and the strength of
desired wireless transmissions between intra-unit radios. We
consider only co-channel interference, as adjacent-channel and
other harmonic interference are negligible due to orthogonal
separation and white space between channels. We calculate the
received signal strength (RSS) along all wireless arcs (r, s) ∈
W in watts using the standard link budget formula [18]. While
SIR is far from the only consideration in determining radio
performance, it is often the limiting factor in determining the
ability to reuse a channel [19], [20], especially in our scenarios
where radio propagation is greatly affected by rough terrain
and radio mobility [4], [21].

Common methods of calculating signal propagation include
the Irregular Terrain Model (ITM) [22] and Hata-COST 231
[23]; we use Systems Toolkit (STK) [24] and the Terrain
Integrated Rough Earth Model (TIREM) [25] to instantiate
our scenarios and calculate total path loss.

For each radio, we pre-calculate the maximum allowable
interference max interferencecs before the radio is disconnected
from its MANET (see [4] for details). The magnitude of co-
channel interference along all arcs (r, s) ∈ W for each avail-
able channel c ∈ C is indicated by interferencecrs. Pairwise
interference between radios r and s may be modeled as:

interferencecrsX
c
rX

c
s ≤

max interferencecs ∀(r, s) ∈ W, c ∈ C. (6)
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That is, a radio s ∈ R may be assigned channel c ∈ C only
if the interference received from any other single radio r on
channel c is at or below the pre-calculated max interferencecs
threshold (note there is no interference between radios assigned
to the same unit). Following [10], [12], [19], [26], [27], we
consider the cumulative effect of all interference sources. That
is, a radio may be unable to use a channel because the total
sum of interference exceeds the threshold max interferencecs,
even if the interference received from any single radio is less
than the threshold. Summing along all arcs yields:

∑
r:(r,s)∈W

interferencecrsX
c
rX

c
s ≤

max interferencecs ∀s ∈ R, c ∈ C. (7)

To linearize these constraints, we introduce the variable Zc
rs ∈{0, 1} where:

Zc
rs =

{
1, if Xc

r = Xc
s = 1

0, otherwise
∀r, s ∈ R, c ∈ C (8)

which is enforced via:

Zc
rs ≥ Xc

r +Xc
s − 1 ∀r, s ∈ R, c ∈ C (9)

Zc
rs ≤ Xr,c ∀r, s ∈ R, c ∈ C (10)

Zc
rs ≤ Xs,c ∀r, s ∈ R, c ∈ C. (11)

We thus obtain our cumulative co-channel interference con-
straints:∑

r:(r,s)∈W

interferencecrsZ
c
rs ≤

max interferencecs ∀s ∈ R, c ∈ C. (12)

The goal of MO-CAP is to minimize the total number of
required channels, so its objective function is:

min
∑
c∈C

Y c. (13)

The objective of MI-CAP is to minimize total interference, so
its objective function is:

min
∑

r:(r,s)∈W

∑
c∈C

interferencecrsZ
c
rs. (14)

MO-CAP and MI-CAP are pure 0-1 integer programs. MO-
CAP comprises constraints (2)-(3), (5), (9)-(12) and objective
function (13); MI-CAP differs in its objective function (14).
To consider these problems at multiple time steps, one may
add an additional index, say t ∈ T , to each variable and input
parameter. Also, the objective functions (13) and (14) could
easily be modified to penalize channel changes (see, e.g., [28]).

B. Realistic Datasets

To illustrate the computational difficulties of solving the cu-
mulative co-channel interference CAP, we use realistic datasets
depicting particular time-steps within high-fidelity simulations
of Marine Corps combat operations. We consider three tactical
Marine Air-Ground Task Force (MAGTF) scenarios, each
with different network topologies. The first scenario, based
on Major Combat Operation 1 [29] involves a Marine Expe-
ditionary Unit (MEU) conducting an amphibious assault on
an island. The second scenario, based on combat operations

TABLE I. SIZE OF SCENARIOS BY NUMBER OF MARINES, UNITS, AND

RADIOS, AND ASSOCIATED MO-CAP RELATIVE OPTIMALITY GAP AND

APPROXIMATE SOLUTION TIMES USING CPLEX SOLVER (VERSION 12.6).

Scenario Marines Units Radios
Relative

Optimality
Gap

Solution
Time

MEU 2000 6 131 0% < 2 sec

MEB 15,000 24 641 0% 24 hours

MEF 60,000 118 1887 77% > 60 hours

in Helmand Province, Afghanistan circa January 2010, is a
Marine Expeditionary Brigade (MEB) conducting irregular
warfare (IW) operations in a desert environment. Our final
scenario, based on Integrated Security Construct B [30], is
a Marine Expeditionary Force (MEF) conducting a major
amphibious assault. A summary of these scenarios and their
associated number of Marines, units, and radios is displayed
in Table I. Each unit requires a channel assignment to support
its individual MANET, and a single MANET may support up
to 30 radios. See [4] for further details on our scenarios.

Several characteristics of tactical military data communi-
cations make the CAP even more difficult to solve than for
typical civilian applications. For example, in radio or tele-
vision broadcast there are relatively few transmission towers
and many nodes functioning only as receivers, whereas in
our scenarios each node functions as both a transmitter and
receiver. Also, our nodes may be on the move. They cannot
benefit from specially-tuned transmission antennae, and instead
use omnidirectional antennae that reduce their ability to project
power in desired directions and increase their susceptibility
to interference. Though mobile phone applications consider
mobility, our node formations are denser relative to the trans-
mission power of each radio. Our radios transmit from five
to 50 watts, whereas most mobile phone handsets are limited
to three watts [31] and cellular transmission towers to an
effective five to ten watts [32]. Further, our radios occupy
large bandwidths (each channel occupies 1.2 to 5 MHz). These
factors decrease the ability to reuse channels, even if the
associated CAP is solved to optimality.

C. Importance of Cumulative Interference

To avoid the computational difficulties of modeling cu-
mulative interference, the vast majority of work on the CAP
assumes only pairwise interference [10]–[13]. In the following
numerical examples, we demonstrate why this is an unrealistic
assumption in our scenarios.

First, for each of the roughly 1800 radios in the MEF
scenario, we sum the total interference received from all other
radios not assigned to the same unit. We then calculate the
total percentage of interference that is captured by the single
largest source of interference. Ideally this is a large percentage,
indicating that we can use pairwise constraints to reasonably
represent co-channel interference. Fig. 2 presents the results
for each radio, where the vertical axis displays the percentage
of total interference. On average, the single largest source of
interference (blue line) accounts for 73.4% of total interference
received by each radio. However, for about 34% of radios,
this single source accounts for only half or less of total
received interference. Hence, pairwise interference constraints
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Radio 

From strongest single source (73.4% average)
From strongest 2 sources (83.6% average)
From strongest 3 sources (87.9% average)
From strongest 4 sources (90.6% average)
From strongest 5 sources (91.8% average)
From strongest 6 sources (92.8% average)
From strongest 7 sources (93.5% average)
From strongest 8 sources (94.2% average)
From strongest 9 sources (94.7% average)
From strongest 10 sources (95.1% average)

Fig. 2. The percentage of total interference captured by considering the
strongest sources of interference (for one to ten sources), for each radio in the
MEF scenario.

(considering only the single strongest source of interference)
would fail to capture a large portion of the total interference
received by most nodes. By considering the strongest ten
sources (black line in Fig. 2), on average 95.1% of interference
is captured, and for less than four percent of radios would these
ten sources capture less than 50% of total interference.

However, this analysis does not consider the maximum
allowable interference max interferencecs. That is, capturing a
large percentage of interference isn’t necessary if this interfer-
ence is well below a radio’s threshold and would not affect
the ability of the radio to operate (i.e., violate the interference
constraint). Over 1200 radios in the MEF scenario receive
unacceptable interference from only one unit. These unaccept-
able combinations can be modeled as pairwise constraints (6),
but this doesn’t consider combinations greater than two. To
examine this, we consider the total number of unacceptable
combinations of radios by the size of combination or n-tuple,
e.g., pairs, triples, etc. The results, averaged over all radios
in the MEF scenario, are presented in Fig. 3. On average
for each radio, there are about ten pairs of units that provide
unacceptable interference. Not counting these pairs, on average
for each radio there are six triplets of units that provide
unacceptable interference. Not counting these pairs or triplets,
there are on average 51 quadruplets, etc. The maximums for
each n-tuple are much higher. Clearly, only using pairwise
interference constraints – as in most of the CAP literature
– does not realistically model our interference environment.
Palpant et al. [12] represent all unacceptable combinations
using pairwise constraints; this greatly over-constrains the
problem and results in inefficient solutions.

III. SOLUTION METHODS AND CHALLENGES

We next describe the most common CAP solution methods,
and the associated computational challenges presented by
our realistic datasets and cumulative co-channel interference
constraints (12).

A. Integer Optimization

The most common method of solving the MO-CAP is using
exact integer optimization methods with variations of com-
binatorial tree search, including branch-and-bound, branch-
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Fig. 3. Average and maximum number of unacceptable combinations of
radios assigned to the same channel within the MEF scenario, by size of
n-tuple.

and-cut, and implicit enumeration [11], [26], [27], [33], [34]
coupled with heuristics that allow bounding of the optimal so-
lution. In general, these methods navigate the solution tree by
selecting variables to fix, solving the associated sub-problem,
and using the result to update upper and lower bounds in order
to fathom (i.e., cut off) suboptimal portions of the tree. Solving
sub-problems is generally done via linear programming (LP)
relaxation, i.e., relaxing the integer constraints of the decision
variables and solving using a variation of the simplex method
or other LP method [35]–[37].

The most obvious computational challenge affecting all so-
lution techniques is the sheer size of the problem. The problem
grows exponentially in both the number of units and channels
[4], [17]. Of course, a large portion of these solutions may be
either infeasible (i.e., violating the interference constraints),
or inefficient (i.e., MO-CAP using far more channels than
necessary). In general, combinatorial tree search methods are
very good at fathoming these sections of the tree, but our
realistic datasets and constraints provide several challenging
computational hurdles.

First, commercial solvers may be sensitive to vast differ-
ences in input parameters, such as our interference values
which range from extremely small (for wireless arcs that
experience high propagation losses) to quite large (for wireless
arcs between radios that are next to each other). These values
vary by 24 orders of magnitude, and are generally quite small.
Per CPLEX documentation, the solver may have difficulty
when objective function and constraint coefficients vary by six
or more orders of magnitude [38]. Further, many solvers, in-
cluding CPLEX, are limited to double floating-point precision
[39], and thus are unable to tell the difference between numbers
smaller than 1.0 × 10−15 or 1.0 × 10−16 [40]. Also, non-
integral data will result in highly fractionalized LP solutions,
as the solver will attempt to “pack” the most units (including
fractions of units) onto the same channel; these fractional
solutions must then undergo a computationally-costly repair
process to become integer-feasible.

Another computational problem (also identified by [12]) is
that of symmetry, which occurs when channel assignments may
be changed without altering the objective value [41]. There
are performance differences between channels on different fre-
quencies, i.e., lower frequency channels will, ceteris paribus,
propagate farther than higher frequencies and thus may provide
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more interference. However, these differences may be very
slight or even indistinguishable between proximate channels.
When conducting a tree search over problems exhibiting near
symmetry, solvers may waste computational time considering
many different solutions that provide essentially identical util-
ity [41]. The very near symmetry of our dataset (as opposed
to exact symmetry) is especially difficult for solvers to detect
and mitigate [42]–[44].

Perhaps the most difficult challenge to commercial solvers
are the cumulative interference constraints (12). Most com-
mercial LP solvers leverage the sparse nature of a problem
by considering only subsets of variables at a time. Consider a
pairwise interference constraint, i.e.,

interferencecrsZ
c
rs ≤
max interferencecs ∀r, s ∈ R, c ∈ C. (15)

The system of linear equations formed by these constraints
would be very sparse, i.e., each row may contain only one
nonzero coefficient (representing a pairwise constraint); all
other column entries would be zero. However, in our cumula-
tive interference constraints (12), a row may contain hundreds
of nonzero coefficients, and thus the overall constraint matrix
is much more dense.

The vast majority of exact optimization work on the CAP
consider only pairwise interference constraints [11]. Dunkin
et al. [10] describe the computational challenge of cumulative
interference, and suggest methods of using binary and tertiary
constraints. Daniels et al. [45] formulate an integer MO-CAP
that considers cumulative interference, and establish the NP-
hardness of the problem. Their heuristic provides solution
values within 3% of those provided by CPLEX, but the impact
of cumulative interference in their problem sets is far less than
in ours. Fischetti et al. [26] use pre-processing and branch-and-
cut to solve their CAP, and tune their Big M value to improve
convergence performance. They solve a number of real-world
problem instances in a reasonable amount of time, but their
problem sizes are much smaller than those described here and
consider few sources of interference.

Table I presents the results of solving MO-CAP using
our datasets and the CPLEX optimizer (version 12.6) [39]
using branch-and-cut. We use a Dell Precision T5500 desktop
computer with twelve 3.47 GHz Xeon processors and 72 giga-
bytes (GB) of random access memory (RAM). It takes nearly
24 hours to obtain an exact solution to the MEB scenario.
The MEF scenario solution time illustrates the computational
difficulties of this problem. Initially, we are unable to find any
solution to the MEF dataset, even after two weeks of compu-
tation. We change our approach and use a heuristic (developed
by [4] and described in [17]) to find an initial feasible solution
and provide it to a distributed implementation of CPLEX to
solve using a 14-computer cluster. After approximately 60
hours of computation, the solver improves upon our initial
solution of 46 channels to 35 channels; this inexact solution
has a relative optimality gap, i.e., distance to a known (albeit
integer infeasible) lower bound of 77%.

B. Constraint Optimization

Another applicable exact optimization method, first sug-
gested for cumulative interference CAPs by [46], is based

on constraint satisfaction problems (CSPs). CSPs determine
if there exists a consistent assignment of Boolean variables
that satisfies a system of logical constraints. Related constraint
optimization problems aim to find a solution which minimizes
penalties associated with violating these logical constraints
[47]. Our CAP consists entirely of binary variables and can
be formulated as a constraint optimization problem, where
each cumulative interference constraint is represented in the
conjunctive normal form usually used to express constraints
to satisfaction (SAT solvers) [48]. Dunkin et al. [10] model
their problem and solve using custom CSP code, but they
consider only groups of seven or fewer transmitters for their
dataset of 37 transmitters. The logical clauses associated with
our datasets are much larger and may be beyond the ability
of current constraint satisfaction solvers. However, constraint
satisfaction techniques may be useful in solving sub-problems
within a larger CAP solution framework. Palpant et al. [12]
solve their cumulative interference CAP using a hybrid of
constraint programming and heuristic methods, and provide
comparable or better performance than heuristic-centric meth-
ods (specifically, [49] and [50]) in a competition using a dataset
from a military application. Constraint satisfaction may also
be used within a Benders decomposition framework (see, e.g.,
[51]–[53]).

C. Heuristics

Due to the computational difficulties of exactly solving
the CAP, heuristics are often used to solve the problem [11],
[27]. Heuristics that consider cumulative interference include
neighborhood search [12], [54], simulated annealing [49],
[55], tabu search [50], [55]–[57], ant colony optimization
[58], greedy heuristics [4], [17], [28], [45], [48], [59], and a
combination of greedy and exact methods [12], [60]. Heuristics
are generally used to support dynamic spectrum access (DSA),
a broad term that refers to dynamic (rather than fixed) allo-
cation. In general, DSA technology assumes channels can be
changed dynamically by each radio with little or no cost [61].
For our application there is a cost (namely, time) associated
with changing channels, so these technologies are not directly
applicable. See [61]–[63] for surveys of dynamic spectrum
access technology.

While heuristics can often provide useful solutions in
reasonable amounts of time, in general they do not provide
certificates of optimality for any particular solution, i.e., the
distance to the global optimum is unknown. We feel these
bounds are important for understanding the goodness of a par-
ticular solution, especially since spectrum is so scarce. Based
on input from a Marine Corps spectrum manager with deep
knowledge of real-world conditions and the MEF scenario, the
actual expected allocation of channels (i.e., the number likely
to be assigned for use by the MEF from higher headquarters)
is 14 [4]. Thus, even the best-known solution of 35 is still
far from the actual number of allocated channels. If we can
find better solutions faster, or state with a greater degree of
certainty that the actual allocation of 14 is not sufficient, our
spectrum manager could request additional spectrum, or then
solve the MI-CAP to provide the least total interference with
the allocated number of channels. Further research is needed
to improve our ability to find provably good solutions.
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IV. TOPICS FOR FUTURE RESEARCH

There are many facets of this problem that are ripe for new
development; we provide the following suggestions for future
research.

A. Preprocessing

New heuristics may be developed to reduce the size of
the input and/or provide initial feasible solutions. The use of
clustering algorithms and research related to packing problems
seems to be a natural fit (e.g., [64]–[68]), as does smart
preprocessing based on constraint satisfaction or constraint
optimization solvers (e.g., [69]–[71]).

Smart preprocessing of the cumulative interference con-
straints (12) could reduce the numerical issues associated
with the interferencecrs and max interferencecs values. Given
a dataset, we can preprocess the interference constraints to
create simplified and more computationally tractable packing
constraints. For example, suppose two specific nodes r and
s (not assigned to the same unit) are not both allowed to
be assigned to channel c because to do so would violate the
associated interference constraint. This may be represented as:

Xc
r +Xc

s ≤ 1. (16)

To generalize for larger n-tuples of units (triplets, quadruplets,
etc.), let S ⊂ R be a subset of radios (none assigned to the
same unit) that cannot all be assigned to the same channel c.
Then ∑

r∈S

Xc
r ≤ |S| − 1. (17)

Preprocessing all such unacceptable combinations may thus
replace the cumulative co-channel interference constraints (12).
For our datasets, preprocessing n-tuples of up to five or six
nodes seems practical (see Fig. 3) and may provide reasonable,
if not feasible, approximate solutions very quickly. This could
then be combined with additional rounds of optimization
designed to reduce or eliminate remaining infeasibility via
a series of additional cuts. Such multi-step approaches are
certainly worth investigating.

B. Parallel and Distributed Computation

Computing technology has advanced significantly since
much of the work on CAPs in the late 2000s. Most computers
and even smartphones have multiple cores, yet most algorithms
specifically developed for solving CAPs are serial and do
not take advantage of parallel and distributed computation.
The problem has structure that seems to naturally lend it-
self to decomposition (e.g., into physical neighborhoods of
radios, or by separate time steps), increasing the desirability
of applying parallel and distributed techniques. The work of
[69]–[72] could be extended to look at CAPs. Further, most
integer solvers remain serial in nature, though new versions of
both CPLEX and Gurobi enable distributed implementations.
Custom coding could also leverage parallel and distributed
computation, e.g., the Python dispy library [73].

C. Numerical Precision

We demonstrate some of the numerical problems associated
with the generally very small and wide-ranging interference
values in our realistic datasets. Gurobi is capable of using
quadruple-precision floating point variables [74], [75]. Custom
optimization code could be developed to handle even higher
precision calculations. For example, the Python mpmath li-
brary enables arbitrary-precision floating point variables, lim-
ited in size only by available RAM [76].

D. Temporal Considerations

A seldom-researched challenge of the mobility-aware CAP
is channel allocations changing over time, and not just at
certain points in time, i.e., a myopic solution. Such a solution
may needlessly flip-flop channel assignments, and may be
particularly fragile to changes in physical network topologies.
The movement of radios in a military environment is far
from arbitrary [21], [77]; by leveraging available information
on the future locations of radios and considering the effects
of network perturbations (such as degraded signal quality),
one can provide a more far-sighted and robust solution to
reduce the number of required channel changes over time. This
decreases the time used by operators to manually adjust radio
configurations, and the time needed by the spectrum manager
to de-conflict unexpected interference.

Changes over time make the challenges we consider that
much more difficult, as now we must compute over multiple
time steps. Most of the methods we reference in this paper
are generally applied to fixed CAPs, where assignments are
permanent or not expected to change quickly. Dynamic CAPs
consider frequent channel changes, but most of these methods
apply fixed CAP methodologies (usually heuristics), or employ
schemes for borrowing channels between radios, without con-
sideration of reducing reassignments over time. See [19] for a
survey on dynamic CAPs.

An interesting idea worth further exploration is the use
of temporal or evolving graphs to model network changes
over time [78], [79]. Rather than just a series of snapshots,
temporal graphs have structure in themselves that can be
considered as a whole [28]. Casteigts et al. [80] provide an
overarching framework of time-varying graphs in pursuit of
general properties, and mention that very little work has been
done in this area. In a seminal work, [81] describes the use
of such graphs to consider time-varying MANETs. This work
was further extended by [82] and [83]. Scellato et al. [84]
present, apparently for the first time, a measure of temporal
robustness for mobile networks, an area of research that surely
is applicable to military problems.

Yu et al. [28] present a unique methodology using temporal
graphs. They develop several heuristics to solve their multi-
objective optimization problem to minimize the number of
required channels (i.e., MO-CAP), while also considering
cumulative co-channel interference and the cost of changing
channels over time. To our knowledge, exact optimization
techniques have not been applied to this particular problem, nor
has a corresponding MI-CAP methodology been developed.
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V. CONCLUSIONS

The increasing demands on scarce EM spectrum creates
a need for highly efficient channel allocations. Many military
EM systems, including independent tactical MANETs, single-
channel radios, radars, and jammers, continue to require man-
ual channel configuration and thus cannot directly benefit from
technologies such as DSA. With the computational power now
available in most desktop computers, we believe the time is
right to develop new methods of solving the CAP considering
both the effects of cumulative interference and the cost of
manually configuring each radio (i.e., changing channels) over
time. Armed with this ability, a spectrum manager is better
able to estimate channel requirements before an operation,
and efficiently utilize available channels and reduce manpower
requirements during an operation.

We believe the most promising approach to this problem is
a hybrid, combining and iterating between smart heuristics to
preprocess the problem, and exact optimization methods using
parallel and distributed computation to find new lower bounds
and calculate optimality gaps. The future is ripe with research
opportunities on this challenging and timely problem.
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